

Optimal Regulation of Network Expansion

work in progress

Bert Willems (TILEC - Tilburg University) Gijsbert Zwart (CPB & TILEC, Tilburg University)

Paris, March 12, 2012

Large amount of investments is foreseen in distribution and transmission sector

- Driven by demand growth, RES integration, Cross-border trade, replacement of existing assets, smart networks.
- Liberalization of energy market was often accompanied by
 - Unbundling of distribution operators
 - Incentive regulation (for instance price cap)
- There are concerns that current regulation does not give right incentives for firms to invest in capital intensive goods
 - Cost plus regulation gave more certainty (and overinvestments?)
 - Short regulatory periods
 - ♦ Vertical integrated firms → More coordination / risk offsets / no double marginalization
 - With a price cap the upside benefits of investments are capped. Downside risk is not.

- Empirical evidence is mixed/positive on effect of incentive regulation
 - Empirical evidence on investments (Cambini & Rondi, 2010; Leautier)
 - Experimental study showing that price cap does quite well (Henze, Noussair, Willems, 2012)
- Many proposals to change / soften regulation
 - Regulatory holidays
 - With right duration (Gans & King, 2004)
 - For truly innovative products (Vogelsang, 2010)
- Limited theoretical research
 - Dobbs (2004) \rightarrow Price cap: insufficient low level of investments
 - Nagel & Rammerstorfer (2008) \rightarrow Price cap with revenue sharing

- 1. Dobbs shows that with a price cap, investments are too little and too late. We check which regulatory scheme is efficient?
 - Assuming as in Dobbs that the regulator has perfect information
- 2. Dobbs assumes that the regulator has all information. Hence, it can effectively command the firm's actions. So how is the optimal regulation if has imperfect information about the costs?
- What is the optimal timing of investments?
- How much profit does the firm make?
- What is the price for consumers?
- How can this be implemented?

Our work combines:

Real option theory (Dixit & Pindyck, 1991)

- Investment under uncertainty
- Delaying irreversibly investments in order to learn more about nature (i.e. avoid investment if demand is low)

- ♦ The value of waiting → Preserves a valuable options
- Optimal regulation (Laffont & Tirole, 1993, Baron & Meyerson)
 - Trade-off between rent extraction and efficiency
 - A low cost firm should receive a rent
 - To limit those rents, an high cost firm produces suboptimal quantities

Model

- Perfect information
- Asymmetric information
- Conclusions

Model: Demand for network capacity

Constant elasticity (ϵ)

- Growth rate (µ > 0)
- Stochastic (Multiple possible paths)
 (σ: measure of volatility)

Demand is observed by the regulator

Model: Supply of network capacity

Network investments

- Investments are irreversible \rightarrow real option considerations
- Constant marginal investment cost c
- Continuous investments possible (no lumpiness)
- Network usage = costless

Model: Market Equilibrium at period t

Given demand realization A, Existing capacity Q, new investment
 δQ

Model

- Perfect information
- Asymmetric information
- Conclusions

Maximize expected discounted welfare

 Expectation over demand realization paths A

 Discounted at discount rate r

 $\mathrm{NPV} \big[W(p,Q) \big] \qquad \text{with } \mathrm{NPV} \big[X \big] \sim \mathrm{E}_{\scriptscriptstyle A} \int \ e^{-rt} X dt$

- By choosing an investment strategy / decision on network usage \rightarrow Given installed capacity Q & demand shock A \rightarrow invest δQ $\delta Q(p,Q)$
- \rightarrow Stochastic optimization problem
- First best optimum
 - ♦ Use network at full capacity → Peak load pricing
 - Expand capacity to prevent prices above a limit price

(2) Investment: Expand capacity to prevent prices raising above a limit

(3) Reward: Firm is allowed to keep all revenue from selling capacity \rightarrow Firm will make zero profit (4) Limit price: Limit price takes into account option value of waiting

Note 1: This is different from price cap regulation

- Firm is not allowed to withhold capacity, even though price is below price cap
- Firm is **obliged to invest** if price reaches limit price
 - It reduces likelihood of high prices in future → so not in the firm's best interest to do so.
 - →Dobbs (2004): Firms invest too late with a price cap
- Note 2: This outcome mimics a competitive market
 - Firms price at short term marginal costs & invest if they break-even
 - "Strategically" delaying investments only works for firms with market power
 - Individual firms invest based on the stochastic prices they observe
 - In equilibrium, upside potential is limited by limit price
 - For individual firm, the stochastic price process is constant

Perfect information: Prices and Profits

Asymmetric information

If regulator knows investments cost c and observes demand A

- \rightarrow It can impose optimal investment strategy
- Now assume that
 - Regulator knows cumulative distribution of investment cost F(c)
 - Firm can only collect revenues from selling network access
- Question: What is the optimal regulation?
 - Regulator offers a menu of contracts
 - $\pi(c)$ Expected profit of firm with investment cost c
 - $\overline{p}(c)$ Investment price limit for firm with investment cost c
 - Truthful revelation principle: We can restrict ourselves to menus for which each firm reports its cost honestly

Asymmetric information

Optimize expected discounted welfare

- \rightarrow Expectation over demand realization paths A,
- \rightarrow Discounted at discount rate r

Expectations over all possible cost realizations c

 $\max_{p(c),\pi(c)} \mathbf{E}_{c} \quad \mathrm{NPV}\Big[w(P,Q) \mid \overline{p}(c)\Big]$

Incentive constraint

$$\frac{d\pi(c)}{dc} \le -NPV \Big[\delta Q \mid \overline{p}(c) \Big]$$

By pretending to be a high cost firm, a low cost firm saves investment costs for production volume. To avoid this, the low cost firm is promised an information rent $d\pi$

Payment constraint

 $\pi(c) \leq NPV \Big[PQ - c \, \delta Q \mid \overline{p}(c) \Big] \quad \begin{array}{l} \text{The regulator needs to finance profits for the} \\ \text{firms from the market} \end{array}$

→ Simplifies to an optimal control problem, now some "intuition"

Asymmetric information Lump-Sum subsidies (Baron-Myerson)

Asymmetric information No subsidies

Asymmetric information No subsidies

The optimum is given by the pair $\bar{c}, \bar{\nu}$ that form the joint solution of

$$\bar{\nu} = -\frac{\int_{c_L}^{\bar{c}} dc' f(c')(\bar{c} + \frac{\bar{\nu}}{f(\bar{c})} - c')}{\left(\bar{c} + \frac{\bar{\nu}}{f(\bar{c})}\right)(1 - \gamma) - \bar{c}}$$
(21)

and

$$\frac{\bar{\nu}}{f(\bar{c})} \left(\bar{c} + \frac{\bar{\nu}}{f(\bar{c})}\right)^{-\frac{1}{\gamma}} = \int_{\bar{c}}^{c_H} dc' \left(c' + \frac{\bar{\nu}}{f(c')}\right)^{-\frac{1}{\gamma}}.$$
(22)

In the optimal contract, all firms with cost below \bar{c} get offered a price cap

$$\bar{p} = \bar{c} + \frac{\bar{\nu}}{f(\bar{c})} \tag{23}$$

while for higher cost firms, the price cap is

$$\bar{p}(c) = c + \frac{\bar{\nu}}{f(c)} \tag{24}$$

⁻ Two regions

Constant price for low cost, Increasing price

for high cost

Conclusion

Perfect information

- Peak load pricing Limit price Obligation to invest
- Firms receives full prices from consumers
- Asymmetric information
 - Menu of contracts
 - Peak-load pricing Limit price Obligation to invest
 - Low cost firm receives full prices from consumers/ high cost firm only fraction
 - Limit price is higher than socially optimal
 - For high cost firms: to reduce rents for low cost firm
 - For low cost firms: to collect sufficient profits from consumers.
 - → Regulatory imperfection delays investmens

Illustration

Example

Effect of different limit price on investments and prices

Perfect regulation, Monopoly and Imperfect regulation

Illustration