Nuclear reactors' construction costs: The role of lead-time, standardization and technological progress

Lina Escobar Rangel and Michel Berthélemy

Mines ParisTech - Centre for Industrial Economics CERNA

PSL Séminaire de recherches en économie de l'énergie

Paris, February 12, 2014

(日)

Outline

1 Motivations

2 Hypotheses and Model

- Data
- Model and variables

3 Results

- Long term learning effects
- Short term benefits of standardization
- Innovation and construction cost
- Economies of scale

4 Conclusion

Demand for nuclear power has increased in the past years and it is likely to keep on rising. According to the WNA(2014), more than **45** countries are considering keep on or embarking upon nuclear programs, broadly we can classify these countries in 3 groups:

Experienced: USA, UK, Korea, Russia, Czech Republic Fast-growing economies: China, India Newcomers: Turkey, Vietnam, United Arab Emirates, etc

...but how much does nuclear power cost?

Financing the construction of new nuclear plants often remains a challenge. Costs for nuclear power plants are driven primarily by the upfront cost of capital associated with construction, and this cost remains highly uncertain.

Figure 3.8: Box plot for the 137 data points. The box-plot parameters are listed to the right of the figure

Box plot for the results (EUR₂₀₁₂/kW_{installed})

The following parameters apply:

Minimum	= 1316 € _{′12} /kW
Median	= 3320 € _{′12} /kW
Maximum	= 6934 € _{′12} /kW

William D'haeseleer (2013)

(日)

With the construction of FOAK EPR reactors in Europe, we can clearly see that they are much more expensive than initially expected

- Olkiluoto-3 in Finland
 - Initial cost prevision in 2003 was €3 billion (€20102.100/kW)
 - Cost revision in 2010 €5.7 billions (€2010 3.500/kW)
- 2 Flamanville-3 in France
 - Initial cost prevision in 2005 was €3.3 billion (€20102.200/kW)
 - Cost revision in 2011 €6 billion (€₂₀₁₀3.650/kW)
 - Cost revision in 2012 €8.5 billions(€20105.100/kW)
- Hinkley Point C in UK
 - According to the UK Press (The telegraph) the initial cost prevision in 2013 was £16 billion → aprox €19.37 billion for two EPRs

For the U.S case:

- 1 Absence of significant learning effects
 - Multiplicity of nuclear vendors, Architect-Engineer (A-E) firms and utilities
 - The diversity in the nuclear models
- 2 Reduction of economies of scale
 - Bigger reactors meant a raise in lead-times
 - Bigger reactors were subjected to a closer and stricter regulatory monitoring
- Stricter regulatory requirements

For the French case:

- Grubler (2011) argues negative learning by doing using estimated costs
- 2 Lack of public data until 2012, when the *Cour des Comptes* published their report on nuclear costs.
- **3** Using the actual costs Escobar Rangel and Leveque (2012) found that:
 - The construction costs escalation was smaller than what Grubler estimated
 - The increase in the costs is highly correlated with the increase in the size of the reactors
 - Positive learning effects within specific reactor models.

(日)

- Which are the main drivers of the construction costs of new nuclear power plants?
 - Capacity
 - Input prices
 - Regulatory requirements
 - Industrial organization
- 2 Where can we expect some cost reductions?
 - Scale effects
 - Learning by doing
 - Standardization
 - Innovations

Data on Construction cost

In the US, the overnight cost in USD₂₀₁₀/MW of the first reactor was almost 7 times less than the cost of the last one

Figure : Overnight construction costs for the French and U.S nuclear fleet

(日)

Rothwell (1986) proposed a theoretical model to study the construction costs of a nuclear power plant. In this model, two firms interact as follows:

- The electric utility seeks to maximize the NPV of the plant by choosing the optimal construction lead-time
- The constructor A-E firm attempts to minimize the cost plant subject to technical constraints and the lead-time

 $Cost = f(LeadTime, Capacity, Prices, error) = \alpha_0 + \alpha_1 ln(LeadTime_i) + \sum_{j=2}^{J} \alpha_j X_{ij} + u_i$

Leadtimes

The average lead-time for the U.S nuclear fleet has been 9.3 years

However, the lead-times can be affected by some unobserved variables that also affect the construction costs (i.e new regulatory requirements) that will bias the estimates in a OLS regression.

To tackle this endogeneity problem, we have to find an instrumental variable that allow us to disentangle the direct effect of the lead-time on the cost equation.

Let's recall some of the desirable properties of an instrumental variable:

- 1 It makes sense = It is correlated with the endogenous variable (lead-time)
- 2 It solves the problem = but uncorrelated with the dependent variable (cost)

 $\textit{LeadTime} = \textit{f}(\textit{Instrument},\textit{Capacity},\textit{Controls},\textit{error}) = \beta_0 + \beta_1\textit{ElecDem}_i + \sum_{j=2}^J \beta_j X_{ij} + \epsilon_i$

(日) (圖) (圖) (圖) (圖)

The system of equations that we estimated is the following:

$$ln(Cost_i) = \alpha_0 + \alpha_1 ln(LeadTime_i) + \sum_{j=2}^{J} \alpha_j X_{ij} + u_i$$
(1)
$$ln(LeadTime_i) = \beta_0 + \beta_1 ElecDem_i + \sum_{j=2}^{J} \beta_j X_{ij} + \epsilon_i$$
(2)

1. To test existence of learning effects, we have considered 4 possible channels:

Table : Variables included in the model to test learning effects

Technology/Firm	A-E firm	Competitors
Same type	ExpArqMo	ExpNoArqMo
Other type	ExpArqNoMo	ExpNoArqNoMo

2. *HHI*_i Index of diversity to explore short term standardization gains. It indicates the number of different types of reactors that were under construction when the construction of reactor *i* began

$$HHI_{c,t} = \sum_{m=1}^{M} s_{mtc}^2$$

Where:

- **c** corresponds to the country
- t corresponds to the year
- m corresponds to the model

 $HHI_i \rightarrow 0$ Means low concentration = highly diverse nuclear fleet $HHI_i \rightarrow 10000$ Means high concentration = standardized nuclear fleet

(日)、(御)、(日)、(日)、

Example

イロト イロト イヨト イヨト

- 3. *Know* that corresponds to the discounted stock of priority patent applications as proxy of innovation
- 4. Capacity and input prices \rightarrow as in a Cobb Douglas cost function as controls
- 5. Dummy variables to control:
 - Country and time fixed effects
 - Changes due to major nuclear accidents TMI and Cherno
 - Vertical integration between A-E and utility

Result 1: Importance of construction lead-time

		del 1	Model 2					
Variable	Cost		Leadtime		Cost		Leadtime	
In I an altima	1.933	***			1.064			
in .Leadline	(0.580)				(0.622)			
In EvenAunMa	-0.142	***	0.009		-0.149	***	0.009	
In .ExpArqivio	(0.038)		(0.011)		(0.034)		(0.011)	
In ExpArgNoMo	0.025		0.026	***	0.029		0.026	***
In .ExpArqivolvio	(0.034)		(0.009)		(0.031)		(0.009)	
In EvenNa AvenMa	0.046		0.010		0.038		0.010	
In .ExplitoArqivio	(0.039)		(0.012)		(0.035)		(0.012)	
In EvenNa AvenNa Ma	-0.068		0.141	***	-0.039		0.141	***
In .ExplitoArqivolvio	(0.096)		(0.017)		(0.087)		(0.017)	
	0.454		-0.566	***	0.374		-0.566	***
ппі _т о	(0.537)		(0.160)		(0.485)		(0.160)	
In Know					1.416	***		
III. MIOW					(0.522)			
In Can	-0.769	***	0.125	**	-0.624	***	0.125	**
in cap	(0.192)		(0.053)		(0.182)		(0.053)	
Ara Htility	-0.256	***	0.009		-0.285	***	0.009	
Arq. Othity	(0.093)		(0.028)		(0.085)		(0.028)	
In Demand			-1.235	***			-1.235	***
in .Demand			(0.113)				(0.113)	
Constant	6.420	**	-2.347	***	-4.182		-2.347	***
Constant	(2.915)		(0.448)		(4.767)		(0.448)	
Country FE	Yes		Yes		Yes		Yes	
Trend + trend ²	Yes		Yes		Yes		Yes	
Obs.	128		128		128		128	
Adj. R ²	0.833	3	0.955		0.866	ō	0.955	

Result 2: Direct learning effects

		del 1		Model 2				
Variable	Cost		Leadtime		Cost		Leadtime	
In I an altima	1.933	***			1.064			
III.Leautime	(0.580)				(0.622)			
In EvenAvenMa	-0.142	***	0.009		-0.149	***	0.009	
In .ExpArqivio	(0.038)		(0.011)		(0.034)		(0.011)	
In ExpArgNoMo	0.025		0.026	***	0.029		0.026	***
In .ExpArqivolvio	(0.034)		(0.009)		(0.031)		(0.009)	
In EvenNa AvenNa	0.046		0.010		0.038		0.010	
In .ExpNoArqivio	(0.039)		(0.012)		(0.035)		(0.012)	
	-0.068		0.141	***	-0.039		0.141	***
In .ExpivoArqivoivio	(0.096)		(0.017)		(0.087)		(0.017)	
	0.454		-0.566	***	0.374		-0.566	***
HHI _m o	(0.537)		(0.160)		(0.485)		(0.160)	
					1.416	***		
In . Know					(0.522)			
In Con	-0.769	***	0.125	**	-0.624	***	0.125	**
in Cap	(0.192)		(0.053)		(0.182)		(0.053)	
A	-0.256	***	0.009		-0.285	***	0.009	
Arq.Utility	(0.093)		(0.028)		(0.085)		(0.028)	
			-1.235	***			-1.235	***
In . Demand			(0.113)				(0.113)	
Contract	6.420	**	-2.347	***	-4.182		-2.347	***
Constant	(2.915)		(0.448)		(4.767)		(0.448)	
Country FE	Yes		Yes		Yes		Yes	
Trend + trend ²	Yes		Yes		Yes		Yes	
Obs.	128		128		128		128	
Adj. R ²	0.833	3	0.955		0.866	ô	0.955	

Result 3: Indirect learning effects

		del 1	Model 2						
Variable	Cost		Leadtime		Cost		Leadtime		
In I and times	1.933	***			1.064				
In .Leadtime	(0.580)				(0.622)				
In Fundaria Ma	-0.142	***	0.009		-0.149	***	0.009		
In .ExpArqivio	(0.038)		(0.011)		(0.034)		(0.011)		
In Even Aven Manda	0.025		0.026	***	0.029		0.026	***	
In .ExpArqivolvio	(0.034)		(0.009)		(0.031)		(0.009)		
In ExpNoAraMo	0.046		0.010		0.038		0.010		
In .ExplitoArqivio	(0.039)		(0.012)		(0.035)		(0.012)		
In ExpNoArgNoMo	-0.068		0.141	***	-0.039		0.141	***	
III.LXpN0ArqN0N0	(0.096)		(0.017)		(0.087)		(0.017)		
<u>иш</u> -	0.454		-0.566	***	0.374		-0.566	***	
ппі _т о	(0.537)		(0.160)		(0.485)		(0.160)		
In Know					1.416	***			
III .TCHOW					(0.522)				
In Can	-0.769	***	0.125	**	-0.624	***	0.125	**	
in cap	(0.192)		(0.053)		(0.182)		(0.053)		
Ara Utility	-0.256	***	0.009		-0.285	***	0.009		
Ald: Otility	(0.093)		(0.028)		(0.085)		(0.028)		
In Domand			-1.235	***			-1.235	***	
III.Demanu			(0.113)				(0.113)		
Constant	6.420	**	-2.347	***	-4.182		-2.347	***	
Constant	(2.915)		(0.448)		(4.767)		(0.448)		
Country FE	Yes		Yes		Yes		Yes		
Trend + trend ²	Yes		Yes		Yes		Yes		
Obs.	128		128		128		128		
Adj. R ²	0.833	3	0.955		0.866		0.955		

Result 4: Diversity and short term benefits of standardization

		odel 1	Model 2					
Variable	Cost		Leadtime		Cost		Leadtime	
In Loadtime	1.933	***			1.064			
III.Leautime	(0.580)				(0.622)			
In Eve AraMa	-0.142	***	0.009		-0.149	***	0.009	
III.LXPAIQINO	(0.038)		(0.011)		(0.034)		(0.011)	
In ExpArgNoMo	0.025		0.026	***	0.029		0.026	***
In .ExpArqivolvio	(0.034)		(0.009)		(0.031)		(0.009)	
In EvenNa AvenNa	0.046		0.010		0.038		0.010	
In .ExplitoArqivio	(0.039)		(0.012)		(0.035)		(0.012)	
In EvenNa AvenNa Ma	-0.068		0.141	***	-0.039		0.141	***
In .ExpNoArqNoNio	(0.096)		(0.017)		(0.087)		(0.017)	
<u>иш</u> -	0.454		-0.566	***	0.374		-0.566	***
ппі _т о	(0.537)		(0.160)		(0.485)		(0.160)	
In Know					1.416	***		
III . KNOW					(0.522)			
In Can	-0.769	***	0.125	**	-0.624	***	0.125	**
in Cap	(0.192)		(0.053)		(0.182)		(0.053)	
Ara Utility	-0.256	***	0.009		-0.285	***	0.009	
Arg. Othily	(0.093)		(0.028)		(0.085)		(0.028)	
In Domand			-1.235	***			-1.235	***
III.Demanu			(0.113)				(0.113)	
Constant	6.420	**	-2.347	***	-4.182		-2.347	***
Constant	(2.915)		(0.448)		(4.767)		(0.448)	
Country FE	Yes		Yes		Yes		Yes	
Trend + trend ²	Yes		Yes		Yes		Yes	
Obs.	128		128		128		128	
Adj. R ²	0.833	3	0.955		0.866		0.955	

Result 5: Innovations

		Model 1					Model 2			
Variable	Cost		Leadtime		Cost		Leadtime			
In Loadtime	1.933	***			1.064	\$				
III.Leautime	(0.580)				(0.622)					
In .ExpArqMo	-0.142	***	0.009		-0.149	***	0.009			
	(0.038)		(0.011)		(0.034)		(0.011)			
In .ExpArqNoMo	0.025		0.026	***	0.029		0.026	***		
	(0.034)		(0.009)		(0.031)		(0.009)			
In . <i>ExpNoArqMo</i>	0.046		0.010		0.038		0.010			
	(0.039)		(0.012)		(0.035)		(0.012)			
In ExpNoAraNoMo	-0.068		0.141	***	-0.039		0.141	***		
III.ExpNoAlqNoNio	(0.096)		(0.017)		(0.087)		(0.017)			
нні о	0.454		-0.566	***	0.374		-0.566	***		
TH IIm0	(0.537)		(0.160)		(0.485)		(0.160)			
In Know					1.416	***				
					(0.522)					
In Can	-0.769	***	0.125	**	-0.624	***	0.125	**		
in cup	(0.192)		(0.053)		(0.182)		(0.053)			
Ara Htility	-0.256	***	0.009		-0.285	***	0.009			
, inq. o timey	(0.093)		(0.028)		(0.085)		(0.028)			
In Demand			-1.235	***			-1.235	***		
in . D cintand			(0.113)				(0.113)			
Constant	6.420	**	-2.347	***	-4.182		-2.347	***		
Constant	(2.915)		(0.448)		(4.767)		(0.448)			
Country FE	Yes		Yes		Yes		Yes			
Trend + trend ²	Yes		Yes		Yes		Yes			
Obs.	128		128		128		128			
Adj. R ²	0.833	3	0.955		0.866	ò	0.955			

Result 6: Economies of scale

		del 1		Model 2				
Variable	Cost		Leadtime		Cost		Leadtime	
In Leadtime	1.933	***			1.064	*		
III.Leautime	(0.580)				(0.622)			
In EveAreMo	-0.142	***	0.009		-0.149	***	0.009	
III. EXPAIGINO	(0.038)		(0.011)		(0.034)		(0.011)	
In . <i>ExpArqNoMo</i>	0.025		0.026	***	0.029		0.026	***
	(0.034)		(0.009)		(0.031)		(0.009)	
In . ExpNoArqMo	0.046		0.010		0.038		0.010	
	(0.039)		(0.012)		(0.035)		(0.012)	
In ExpNoAraNoMo	-0.068		0.141	***	-0.039		0.141	***
III. ExpNoAlqNoNio	(0.096)		(0.017)		(0.087)		(0.017)	
нні о	0.454		-0.566	***	0.374		-0.566	***
TH Imo	(0.537)		(0.160)		(0.485)		(0.160)	
In Know					1.416	***		
					(0.522)			
In Can	-0.769	***	0.125	**	-0.624	***	0.125	**
in cap	(0.192)		(0.053)		(0.182)		(0.053)	
Ara Utility	-0.256	***	0.009		-0.285	***	0.009	
/ inq. O timely	(0.093)		(0.028)		(0.085)		(0.028)	
In Demand			-1.235	***			-1.235	
in .Demand			(0.113)				(0.113)	
Constant	6.420	**	-2.347	***	-4.182		-2.347	***
Constant	(2.915)		(0.448)		(4.767)		(0.448)	
Country FE	Yes		Yes		Yes		Yes	
Trend + trend ²	Yes		Yes		Yes		Yes	
Obs.	128		128		128		128	
Adj. R ²	0.833	3	0.955		0.866	ō	0.955	

Construction lead-times in OECD countries

(日) (四) (日) (日) (日)

Construction lead-times in OECD countries

	(1)		(2)						
Variables	(ln <i>LT</i>	.)	(ln <i>LT</i>)						
HHI.Moi	-0.291	**	-0.472	***					
	(0.135)		(0.182)						
In Capi	0.395	***	0.254	***					
	(0.052)		(0.052)						
$ExpArqMo_i$	0.019		-0.008						
	(0.032)		(0.029)						
In EDem _i	-16.970	***	-21.219	***					
	(2.866)		(3.265)						
In NPP.UCi	-0.020		-0.054						
	(0.033)		(0.047)						
Tmi.US	0.432	**	0.439	***					
	(0.044)		(0.062)						
Tmi.Abroad	0.139	***	0.142	**					
	(0.054)		(0.061)						
Cherno	0.188	***	0.214	***					
	(0.029)		(0.027)						
Constant	1.105	***	1.977						
	(0.402)		(0.440)						
Country FE	Yes		Yes						
Time FE	No		Yes						
Trend + Trend ²	Yes		No						
Obs.	286		286						
Adj. R ²	0.840)	0.869						
Note: Robust standard errors in parentheses									

(日) (圖) (里) (里)

1 Standardization is a key criterion for the economic competitiveness of nuclear power

- Reducing diversity has a short term benefit through a reduction in lead-times, the latter being one of the main drivers of construction costs
- Positive learning effects are conditional on the standardization considering that they only take place through reactors of the same models built by the same firm
- 2 There is a trade-off between reductions in costs enabled by standardization and potential gains from adopting new technologies with better operating and safety performance → Optimal pace of technological change

Thank you for your attention

